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The purpose of this analytical work is twofold : first, to clarify the physical mechanisms 
triggering the one-dimensional instabilities of plane detonations in gases; secondly to 
provide a nonlinear description of the longitudinal dynamics valid even far from the 
bifurcation. The fluctuations of the rate of heat release result from the temperature 
fluctuations of the shocked gas with a time delay introduced by the propagation of 
entropy waves. The motion of the shock is governed by a mass conservation resulting 
from the gas expansion across the reaction zone whose position fluctuates relative to 
the inert shock. The effects of longitudinal acoustic waves are quite negligible in piston- 
supported detonations at high overdrives with a small difference of specific heats. This 
limit lcads to a useful quasi-isobaric approximation for enlightening the basic 
mechanism of galloping detonations. Strong nonlinear effects, free from the spurious 
singularities of the square-wave model, are picked up by considering two different 
temperature sensitivities of the overall reaction rate : one governing the induction 
length, another one the thickness of the exothermic zone. A nonlinear integral equation 
for the longitudinal dynamics of overdriven detonations is obtained as an asymptotic 
solution of the reactive Euler equations. The analysis uses a distinguished limit based 
on an infinitely large temperature sensitivity of the induction kinetics and a small 
difference of specific heats. Comparisons with numerical calculations show a 
satisfactory agreement even outside the limits of validity of the asymptotic solution. 

1. Introduction 
The evidence that gaseous detonation waves might prefer to travel with a locally 

three-dimensional and unsteady configuration has been established experimentally for 
many years (see for a review: Fickett & Davis 1979; Strehlow 1985; Williams 1985). 
The boundaries of the cells developing on detonation fronts are Mach stems 
propagating in the transverse direction across the shocked gas at approximately 
acoustic velocity, so that the pattern changes continuously with time. Smoked-foil 
records of detonations in tubes exhibit diamond-shaped patterns which have been 
reproduced by two-dimensional direct numerical simulations (Oran & Boris 1987 ; 
Bourlioux & Majda 1992). From the theoretical side, the most complete treatment of 
stability of detonation waves is that of Erpenbeck (1964). Solving the initial-value 
problem by Laplace transformation, hc obtained the stability limits numerically but 
could not expose the underlying physical mechanisms. Abouseif & Toong’s statement 
(1982), ‘ Many attempts to unravel the physical mechanism triggering the detonation 
instability have met with a modicum of success’, still holds. A coupling of transverse 
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acoustic waves to a longitudinal oscillatory instability could be the key point (Abouseif 
& Toong 1986). 

One-dimensional oscillations, called galloping detonations, were predicted by direct 
numerical simulations of Fickett & Wood (1966) and observed by shooting a blunt 
body projectile into reactive mixtures (Alpert & Toong 1972; Lehr 1972; see also the 
preliminary results of 1962 at NBS which are reported in the 9th Symposium on 
Combustion, p. 476). The corresponding Hopf bifurcation has been described by 
numerical analysis of the linearized equations (Erpenbeck 1964; Lee & Stewart 1990). 
Erpenbeck (1967) was the first to develop a weakly nonlinear theory. The general 
bifurcation formalism leading to the Landau-Stuart equation has been adapted to this 
problem by Bourlioux, Majda & Roytburd (1991 j. Despite all the information that can 
be extracted from these formal analyses, they fail to provide enough physical insights 
into the problem for its modelling. The purpose of the present analytical work is 
twofold : first, to clarify the physical mechanisms governing the one-dimensional 
instabilities of planar detonations ; secondly, to provide a description of the nonlinear 
dynamics valid even far from the bifurcation. Moreover, the asymptotic solution of the 
reactive Euler equations presented in this paper in one-dimensional geometry is a 
prerequisite for tackling the multi-dimensional and unsteady structures of detonations. 

The governing equations written in terms of a mass-weighted coordinate are 
presented in 52. Section 3 is devoted to simplified models which provide the physical 
insights into the problem. Section 4 is concerned with a rational approximate solution 
to the reactive Euler equations. A nonlinear integral equation for the dynamics of 
overdriven detonations is obtained by an asymptotic analysis. The results are discussed 
in $5.  Conclusions and perspectives are presented in $6.  

Since the first works by Shchelkin (1959) and Zaidel (1961), there has been much 
discussion in the literature of the square-wave model (see Fickett & Davis 1979 for a 
review). This model which corresponds to the singular zero limit of the ratio of the 
reaction time to the induction time, proved to be very useful in describing nonlinear 
phenomena in quasi-steady regimes of propagation (Zeldovich 1940 ; He & Claviii 
1992, 1994). However, the detonation dynamics obtained from this model is singular. 
The one-dimensional stability analysis of Erpenbeck (1963) yields an infinite spectrum 
of discrete unstable modes with unbounded linear growth rates increasing with 
frequency. This differs drastically from the stable modes obtained at high frequency by 
the numerical results of a smoothly distributed heat release. The square-wave model 
leads to a differential-difference equation for the shock velocity which is of the 
advanced type: the velocity of the leading shock at the current time depends on both 
the shock velocity and the shock acceleration at an earlier time (Fickett 19853). 
Solutions of such equations develop singularities after a finite time. However, the 
physical mechanisms involved in this singular dynamics are worth investigating : we 
show in $83.2 and 3.3 that the conservation of mass between the leading shock and the 
piston is responsible for the one-dimensional instability of piston-supported deton- 
ations with a large degree of overdrive. Acoustic signals play a minor role. The sharp 
time delay due to propagation of entropy waves is at the origin of the singular 
dynamics. A simple example illustrating the drastic effect of a distributed rate of heat 
release on the spectrum of the linear modes is presented in $3.4. The singular character 
of the dynamics is suppressed by averaging the time delay over space. 

A ratio of specific heat close to unity is an approximation which simplifies greatly the 
nonlinear analysis of the reactive Euler equations (Blythe & Crighton 1989): in the 
entropy waves, the temperature fluctuations are mainly due to the variations of the 
heat release rate; the entropy waves are no longer coupled to the pressure field and the 
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unsteady distributions of temperature and reaction rate are governed by the 
temperature of the shocked gas only (see 94.1). When the temperature sensitivity of the 
induction kinetics is large, strong nonlinear effects are picked up even with small 
fluctuations of the shock velocity (see $4.2). As the square-wave model results from the 
Arrhenius law in the limit of infinitely large activation, a more sophisticated asymptotic 
expansion must be used to avoid spurious singularities. Two different temperature 
sensitivities are introduced; one governing the induction length and another one the 
distribution of heat release rate. Only the first one is considered as a large parameter. 
Such approximations are accurate for gaseous detonations. Finally, the additional 
assumption of a high degree of overdrive is used for exhibiting the essential role of mass 
conservation within a quasi-isobaric approximation. In this limiting regime of 
propagation the longitudinal acoustic waves have a negligible effect on the longitudinal 
oscillatory instability. A nonlinear integral equation is obtained in 54.3 by an 
asymptotic analysis of the Euler reactive equations in a distinguished limit associated 
with the above mentioned approximations. The linear version of this equation bridges 
the gap between the unphysical character of the singular instability exhibited by the 
square-wave model and the stable solutions observed with a sufficiently smooth 
structure. The nonlinear dynamics obtained by this equation is compared with direct 
numerical simulations of one-dimensional detonations. Satisfactory agreement is 
obtained even outside the limits of validity of the analysis. The ways to extend these 
results to low overdrives and to a multi-dimensional geometry are briefly outlined. 

2. Governing equations 

may be written as follows: 
The governing equations in a one-dimensional, inviscid, chemically reacting gas flow 

(2.1 a)  

(2.1 b) 

(2.1 c) 

(2.1 d )  

(2.1 e) 

for an ideal gas, Variables are as follows: t is the time, x the distance, u the gas velocity, 
p the pressure, p the mass density, T the temperature, y the progress variable ( y  = 0 in 
the initial reactive mixture, y = 1 in the burned gases), C, and C, the specific heats, Q 
the heat of reaction and W the reaction rate per unit mass. The simplest model of 
chemical reaction corresponds to a reactant which is converted to a product by a one- 
step irreversible exothermic reaction. In such a case, (1 - y )  is the reactant mass fraction 
and the reaction rate W(y,  T )  is a function of y and T. The most popular kinetic model 
in gaseous combustion is the Arrhenius law, 

W =  t;:!B(l -y)”exp - (E /RT) ,  (2. If 1 
where teal is the elastic collision time, B a prefactor and n the order of the reaction. A 
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large activation energy, E/RTv 9 1, ensures the validity of the ZND detonation 
structure in which an inert shock wave is followed by a reaction zone; Tv is the 
temperature of the shocked gas just downstream the shock (Neumann spike). 

2.1. Mass-weighted coordinate 
Let x,(r) be the path of the leading shock. As in the study of vibratory instabilities of 
planar flames by Clavin, Pelce & He (1990), it is convenient to introduce a system of 
reduced coordinates constituted by a mass-weighted dimensionless distance relative to 
the moving shock and a reduced time, 

t 
pdx, 7 = - ,  (2.2a) 

Do is the shock velocity of the steady detonation wave propagating into the fresh gas 
mixture initially at rest with a density pu. The timescale tref is arbitrarily chosen, for 
example as the induction time, 

tref = aW-l(y = 0, &J, (2.2b) 

where a is a coefficient chosen for convenience and subscript o denotes the steady state. 
With these reduced coordinates the governing equations are written in the moving 
frame attached to the leading shock as 

tref 
t =  

(2.3 a)  

(2.3b) 

' (2 .3~)  P----P = __ 
1 1 D  1 D  
y p D 7  p D r  CpTW'  

Q -w(y,T) or - -P  = 
- - T - ( e )  I D  

TD7 Y PDT CpT 

(2.3 d )  

where w = Wt,,, is the reduced reaction rate, u = Do+ u the gas velocity relative to the 
shock of the steady detonation and y = C p / C ,  the ratio of specific heat. D/Dr  denotes 
the substantive derivative in reduced coordinates (2.2), 

D ?  a 
- = -+m(r)- 
D7 ar C7E' 

and 

(2.3e) 

is the reduced mass flux across the leading shock moving with a velocity 
D(7) = -dx,/dt. The gas velocity relative to the perturbed shock is u + D = u - Do + D .  
Subscript N denotes the state at 6 = 0, immediately downstream of the shock front of 
the unsteady detonation (Neumann spike for a steady CJ-detonation). The propagation 
is in the negative direction, and the gas flow downstream of the shock corresponds to 
[ 2 0. When p is eliminated from (2.3 a)  and (2.3 c) ,  one gets 
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Then, by combining (2.4) with (2.3 b), the characteristic equations for a reacting gas are 
obtained in terms of the reduced mass-weighted coordinates : 

with 

(2.5a-b) 

(2.5 c) 

where p(p, T )  is given by (2.1 e) and where the frozen sound speed a(T)  is defined by 

a2=y-=y(C , -C , )T .  P (2.5 d )  

The motion of the leading shock, m(r), is obtained from the solution of hyperbolic 
equations (2.3 c, d )  and (2.3a, b)  or (2.5a, b)  satisfying both the Rankine-Hugoniot 
jump conditions across the inert shock at 5 = 0 and an additional boundary condition 
in the burned gas at f; i + x (see below). 

P 

2.2. Boundary conditions 
When the state of the fresh mixture (labelled by subscript u)  in which the detonation 
propagates, is uniform and constant, the values of all the variables (p-&, v N ,  T,,, y N )  at 
f; = 0 are expressed in terms of m(r) by using the Rankine-Hugoniot conditions, 

g = 0 :  

(2.6a) 

(2.6b) 

z- 2y {(y - 1) M 2  + 2}, ( 2 . 6 ~ )  
(Y + 

y.?; = 0 (inert shock), (2 .6d)  

where M is the Mach number of the leading shock, 

M = D/a ,  = m(r)M,,, (2.6e) 

and where M ,  is the Mach number of the steady solution M,, = Do/au. MAT is the local 
Mach number of the flow immediately downstream of the shock, 

where aN = a(7;,) is given by (2.5d).  The approximation M 2  9 (7- 1) /2y  with 
( y -  1) M 2  = 0(1) which has been used in (2.6), is valid for gaseous detonations. 
Finally, let us recall the Mach number of a CJ detonation: 
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Q/C,T, 9 l * M ~ J , , % 2 ( y + l ) Q / C p ~ i  9 1. (2.6g) 

The usual boundary conditions in the burned gases depend on the cases under 
considerations : 

(i) For an overdriven detonation sustained by a moving piston, the gas velocity v is 
prescribed at the position of the piston. In the limiting case of a piston moving at 
constant velocity u,, far from the reaction zone. one has 

[++oo: v = u  -Sv=O. ( 2 . 7 ~ )  

A steady solution exists only for a subsonic piston velocity, vb, d ub,, i.e. Mb < 1, 
where subscript b denotes the burned gas state, M ,  = vb,/abo is the Mach number. 

(ii) For the same configuration, a different condidon, namely an acoustic radiation 
condition, is also often used in the stability analysis. When each variable z is 
decomposed as z = z,+Sz, the acoustic radiation condition is written as 

[ i + c o :  Sp-pPb,ab,Sv = 0. (2.7b) 

This condition applies at the end of the reaction and results from the acoustic solution 
in the rear region of burned (inert) gases between the end of the reaction and the piston. 
Its validity rests upon the assumption that the reaction thickness is much smaller than 
the distance of the piston from the leading shock. According to the linearized form of 
(2.5b) with w = 0, the forward characteristic propagating in the burned gases yields 

(2.8 a) 

bo 

( a / h  + (1 - Mio') ?/c'F) $f,- = 0 where Sf,- = Sp - p,, ub, 60, 

with a general solution of the form 

(2.8 b) 

The boundedness requirement at the piston (g = + a) in the unstable case (tf, 3c ear 
with Rev > 0) implies that Sf,- = 0 in all the rear zone. Matching conditions of the 
thin reaction layer with the large burned gases region yields boundary condition (2.7 b). 

(iii) For a freely propagating detonation followed by a rarefaction wave, a sonic 
condition must be used in the burned gas region. As for CJ waves, this condition is 
necessary to protect the shock-reaction complex from quenching by the rarefaction 
wave. This problem will not be considered here. 

The intrinsic longitudinal dynamics of detonations develop on the induction 
timescale and are not very sensitive to details of the rear boundary condition. This is 
confirmed by the numerical analysis of Lee & Stewart (1990) showing that the stability 
limits and the linear spectrum obtained with a piston condition ( 2 . 7 ~ ~ )  or a radiation 
condition (2.7b) are quite similar. 

3. Physical considerations 
Before analysing the one-dimensional dynamics of planar detonations in a systematic 

way, we present in this section studies of simplified models which are useful for 
providing the physical background of the perturbation method which is used in $4 for 
deriving an asymptotic solution of the reactive Euler equations. To begin with, we 
clarify the mechanism responsible for the singular character of the dynamics of plane 
detonations put in evidence by Erpenbeck (1963) within the approximation of the 
square-wave model. The stiffness of this model (discontinuity in the rate of heat 
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release) induces spurious singularities. However, the mechanisms involved are worth 
investigating because they are limiting forms of those triggering the instability of real 
detonations. The one-dimensional stability analysis of the square-wave model is briefly 
revisited in the next section. 

3.1. Square-wace model 

In this model all of the heat is released instantaneously after a state-dependent 
induction time t,. The leading shock is followed by the constant-state induction zone 
of thickness 1, which is terminated by an infinitely thin exothermic layer located at x,, 
f, = x, -xs, as sketched in figure 1. This model which corresponds to the singular zero 
limit of the ratio of the reaction time to the induction time, (t,/t,) + 0, may be obtained 
from an Arrhenius law (2.lf) in the asymptotic limit E/RT,,o++ m. The main results 
are presented below and details are given in the Appendix. When the Rankine- 
Hugoniot conditions are used, the linear solutions for both the acoustic and entropy 
waves propagating across the induction zone express the perturbations of the gas flow 
at the entrance of the reaction sheet at the current time 7, Sp,(7), S v r ( 7 ) ,  6p1.(7), as a 
linear combination of the fluctuations of the reduced mass flux crossing the leading 
shock, but at three different instants of time, 

Sm(7 - l), Sm(7 - 1 + AT,), (Sm(7 - 1 + AT& (3.1) 

with three delays: one is the reduced transit time of the entropy waves from the leading 
shock to the reaction sheet, 1 - A71 and A72 - 1 are positive time delays associated with 
the acoustic signals propagating in the downstream and upstream directions across the 
induction zone, 

where MATO < 1 is the local Mach number of the flow at the Neumann spike. In the limit 
(f,/t,) + 0, the reaction shcct is in quasi-steady state and responds instantaneously to 
any perturbations Spp,(7), SU,(T), Sp,(7) which vary with the same characteristic timescale 
as the induction time, A7 = O(1). Then the fluctuations of the reduced mass flux 
crossing the reaction sheet Sm,(7) may be expressed as a linear combination of Sp,(7), 
Sv,(7) and Spp,(7) yielding 

I - A T ~  l/(M;:+l),  AT^-^ 1/(hfkt-1), (3.2) 

Sm,(7) = ~ 8 4 7  - 1) + b, Sm(7 - 1 +  AT^) + b, Sm(7 - 1 + A7J. ( 3 . 3 )  
The coefficients c. b, and b, are obtained from the boundary conditions in the burned 
gases, ( 2 . 7 ~ )  or (2.7b), and the jump conditions corresponding to conservation of mass, 
momentum and total enthalpy across the quasi-steady reaction sheet. Their values are 
not useful here. Let /I be a reduced activation energy representing the temperature 
sensitivity of the induction time, /I is a large number with a typical value 10. Thcn 
kinematic and kinetic considerations presented in the Appendix lead to 

(3.4) 

expressing the time derivative of the induction time of a fluid particle reacting at  7 and 
shocked at 7 - 1. All the ingredients are now collected to describe the strong instability 
experienced by a detonation wave in the limiting case of the square-wave model. 
According to the Rankine-Hugoniot condition (2.6 c), STv(7 - l)/y?ro is proportional 
to Sm(7- I), then ( 3 . 3 )  and (3.4) lead to an evolution equation for Sm(7- 1) which 
involves two time delays only. After a shift of origin (7- 1 +7) the equation can be 
written as 

(3 .5)  

where, according to (3.2), A71 > 0 and A7* > 0 are the difference of transit timcs 

-~(1/~io)dT’(7- l ) / d ~  = S ~ , ( T ) - & W Z ( T -  I ) ,  

dm(7)ldt = C $ 4 7 )  + B, Sm(7 + A7J + B, Snt(7 + A7J,  
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FIGURE 1. Sketch of a square-wave detonation structure. 

between the entropy wave and the acoustic signals. Such a difference-differential 
equation of the advanced type presents singularities after a finite time. 

3.2. Physical mechanisms of the oscillatory instability of detonations 

In the approximate analysis developed by Abouseif & Toong (1982) to elucidate the 
instability mechanisms of less singular models of detonation, the attention was focused 
on the coupling of the exothermic reaction to the acoustic waves propagating between 
the inert shock and thc end of the exothermic reaction. As for the thermo-acoustic 
instabilities of combustion in a cavity or of vibratory flames propagating in tubes 
(Clavin et al. 1990; Searby & Rochwerger 1991; Clavin & Sun 1991), amplification of 
acoustic waves generated by the perturbed heat source was considered as an important 
mechanism of galloping detonations. A somewhat different understanding arises by 
noticing that the singular instability of the square-wave model remains even when the 
acoustic waves are removed from the induction zone in the zero Mach number limit 
M N o  +- 0. According to (2.6 c),  such a small Mach number approximation is valid for 
a strong shock wave and a small difference of specific heats: 

(y-1)Mi > 1, (7-1) 6 1 * M N ,  6 1. ( 3 . 6 ~ )  

According to (3.2), the two time delays of (3.5) are identical in this limit: A 7 p  1, 
A72 + 1. Equation (3.5) reduces to a differential equation of the advanced type but with 
only one time delay ; the catastrophic instability is still present, 

dm(tj/dt = C&m(tj + ( B ,  +B,) 6m(t+ 1). (3.66) 

In order to clarify the origin of this instability, consider the piston problem (2 .7)  
sketched in figure 1 in a simplified version in which the density fluctuations are 
negligible both in the burned gases and in the induction region, 6p/p < 1, but with a 
density jump across the reaction of order unity and with a fluctuation of position of 
the reaction sheet relative to the shock of order unity, 81i/li = O( 1). The time derivative 
of the mass by unit cross-section between shock and piston is governed by the variation 
of the mass flux across the shock pu so([). This mass variation may be also expressed 
in terms of the time derivative of the distance of the reaction sheet from the shock 
dl,/dt. By equating these two expressions, mass conservation yields 

( 3 . 6 ~ )  
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Owing to the induction kinetics, the time derivative of the induction length 
(1 / / t o )  dl,(T)/dT is related to the time derivative of the temperature fluctuations at 
the shock but at an early time involving a delay associated with the transit time 
of the entropy wave (1/K, ) dTv(7- l)/dT (see the Appendix). According to 
the Rankine-Hugoniot condifion (2.6c),  (l/TN) dqh7(7- l ) / d ~  is proportional to 
( 1/DO)dD(7- l ) / d ~ .  This yields the same evolution equation as (3.6b) with, according 
to (2.6b) and (3.6a), p z k / p n , ,  = O(y-1) and C = O(y-I), (B,+B,)-l  = O(P(y-1)). 
To summarize, the basic mechanisms involved here are: 

(i) the motion of the reaction sheet with a velocity relative to the shock governed 
by the velocity fluctuations of the leading shock but at an earlier time; 

(ii) the transit time of entropy waves from shock to reaction sheet; 
(iii) a mass conservation involving the gas expansion across the moving reaction 

sheet. 
The role of entropy waves was clearly identified in the approximate analysis by 

A bouseif & Toong (1 982) but the attention was focused on the compressible effects of 
acoustic waves. As shown by the comparison between (3.5) and (3.66),  the propagation 
of acoustic signals may influence the final result by modifying the delay, but is not the 
key mechanism of the oscillatory instability. In the limiting case of piston-supported 
detonations with a sufficiently large degree of overdrive, the effects of acoustic waves 
are quite negligible yielding a simple description of galloping detonations which is still 
relevant, at least qualitatively, outside the domain of validity of this approximation. 
The discontinuous change of density across the reactive sheet is responsible for the 
spurious singularities of the square-wave model. For real detonations with a distributed 
rate of heat release, averaging the time delay over space suppresses the singular 
character as shown in $3.4. This is more easily described at high overdrives presented 
below. 

3.3. Quasi-isobaric approximation 

A small local Mach number approximation (3.6a) is valid in the induction zone only. 
For piston-supported detonations with a sufficiently high degree of overdrive, the local 
Mach number is also small throughout the exothermic region. The degree of overdrive 
f i s  defined as the square of the ratio of the propagation velocity D to that of the 
Chapman-Jouguet detonation DC2,. Thus,f= Mt/M2, ,  where M,, is given by (2.6g). 
The Mach number in the burned gases Mb, behaves as 

(y-l)+O, f - '+o-M;,  = + { ( y l ) + f - ' > ,  (3.6d)  

showing the domain of validity of a uniformly valid approximation of a small local 
Mach number. Notice that the Euler reactive equations (2.1) are still valid in 
detonations with a small local Mach number approximation. The relative importance 
of the molecular transport processes compared to the convective ones is measured by 
the inverse of a Reynolds number, u/ZvnT0 = M$tCol/treac, built with a characteristic 
diffusion coefficient, v x a:tutrol and a characteristic length of variation, 1 x t,,,, vN,, 
where t,,,, is a characteristic reaction time. According to (2. If), tcol/trpor x 
exp ( -E,o/R~.,ro), and the validity of the reactive Euler equations corresponds to an 
intermediate range of local Mach numbers, 

eXP-(ENo/RT*o) < M%" 4 1, (3.6e) 

quite relevant for gaseous detonations. 
As shown by (2.5a,b) with w = 0, the order of magnitude of acoustic-induced 

isentropic pressure fluctuations is 6 p / p  = M I  Su/u where M ,  % v / a  is the local Mach 
number. Order of magnitude estimates of pressure fluctuations due to gas velocity 
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variations on the time and lengthscales of the induction period, are according to (2.3b), 
Sp/p x h4; Sv/v. According to (2 .6~)  the pressure fluctuations of the shocked gas are 
negligible when the perturbations of the detonation velocity are small : 

6pPN/pN x 26010 4 1. (3.6.f") 

When (3 .6~)  and (3.6e,,f) are satisfied, the pressure fluctuations 6p /p  are negligible in 
(2.4) which reduces to a mass conservation resulting from a quasi-isobaric gas 
expansion as in flames (see Clavin 1994 for a recent review). Boundary conditions 
(2.7a, b) are identical in this approximation and mass conservation yields 

(3.74 

which is valid for any profile of heat release. Equation (3.74 has to be used with the 
Rankine-Hugoniot conditions (2.6b, c) written in the linear approximation as 

(3.7b) 

Whenever the combustion laws are such that the distribution of the rate of heat release 
w = Q(5,7) is expressed in terms of the temperature fluctuations at the shock STv/TNo 
only, (3.7 a, b) yield the evolution equation of strongly overdriven detonations. 
According to (2.66) and (3.7b), ",/Do FS (7- 1) and 6vN/u,  FS - (y-  l)-lSD/D, in 
such a way that in the limiting case (3.6a), strong effects are retained in (3 .7~)  even for 
small perturbations of the detonation velocity, 6D/D = O(y- 1). 

3.4. Efects of a distributed rute of heat release. Comparison with the 
square- wave model 

In order to illustrate how a distributed rate of heat release changes the detonation 
dynamics from the singular one, (3.5) or (3.6b), let us consider a model which is just 
the opposite of the square-wave model. Assume that the reactive fluid particle liberates 
heat with a constant reaction time prescribed by the temperature at which the particle 
was shocked. In the same notations as (2.1f), this yields for n = 1, 

By choosing the reference time as 

(3.8a) 

(3.8b) 

w x (1 - - y ) /&(~-<)  with h,(7) = exp(-ON(7)) and ON = p6T,/TNo, 

where 
E/RTNo + 1, ON = O(1). (3 .8~)  

According to (3.8c), the attention is focused on small perturbations at the leading 
shock which are amplified by a high temperature sensitivity p + 1 : SD/Do = 
6m = O(l//3)e6T,r/TATTp = O(l/p) => Sw/w = O(1). In such a case, 6m may be 
neglected in (2.3d) to gve 

a a  
-y+-y = w, 
87 a[ (3.8d) 
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with a solution satisfying the boundary condition at 5 = 0: y = 0 of the form: 

to give, in the linear approximation, 

M, = e-c+ SQ(& 7) with SQ(& 7) = (1 - 5) e-50N(7 - 8. (3.8f 1 
A linear integral equation for OJT) is obtained directly from (3.7a,b) and (3.8 f ) ,  

with complex eigenvalues = cr,+io(O, cc eur) which are solutions of an algebraic 
equation, 

cr2+(2-b-l)a+ 1 = 0, (3.8h) 

exhibiting a stability domain (ar < 0) characterized by b-l < 2 with a Hopf bifurcation 
(CT, = 0, w = 1 )  at b-l = 2 representing the onset of galloping detonations. 

By comparison, the progress variable of the square-wave model is an Heaviside 
function, y = H(5- ti(.)) with a singular reaction rate obtained from (3 .8d)  in the form 
w = - (d5,/d7) a([-- &(r)) + S([- &(7)), where a([- 5%) is the Dirac function. Then by 
using results of the Appendix, d&/d7 = - d0,(7 - iJ/d7, (Sm is neglected in (A 13)) 
one obtains from ( 3 . 7 ~  b) a difference-differentia1 equation of the same advanced type 
as (3.6b) with C = 0, 

bON(7) = dON(7- l)/d7. (3.9a) 

The comparison with (3.8g) is made easier by writing ( 3 . 9 ~ )  in the form 

(3.9b) 

Equations (3.9 a ,  b) yield a transcendental equation for the eigenvalues 

b = re-", (3.9c) 

presenting an infinite set of discrete unstable modes with unbounded amplification 
rates increasing with frequency (ar+ + m ,  w +  m). This is quite different from the 
spectrum obtained from (3.8h). Equations (3.8g) and (3.9b) both belong to the same 
class characterized by a distribution of reaction rate whose linear perturbation may be 
written in terms of the temperature fluctuation at the shock as 

SQ(&, 7) = G ( 8  ON(7- Q 3 bOA,(7) = G(Q ON(7- Q d5. ( 3 . 1 0 ~ )  

The corresponding equation of eigenmodes is written in terms of the Laplace transform 
of G(Q as 

b = 1; G(Q eP5 dt,  (3.10b) 

where b = 0(1) is a coefficient given in (3.8g) and where, in general, G ( 8  may be 
expressed in terms of the steady state solution, see (4.7b). The difference of results 
(3.8h) and ( 3 . 9 ~ )  illustrates the sensitivity of the detonation dynamics to the profile of 
the rate of heat release. Equation (3.10b) bridges the gap between the singular 

r 
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dynamics of detonation models with a discontinuous structure and the stability of 
detonations characterized by a sufficiently smooth inner structure. All the information 
is now collected to derive an asymptotic solution of the reactive Euler equations. 

4. Asymptotic solution of the reactive Euler equations 

To begin we analyse the case 

When the ratio of specific heats is sufficiently close to unity the isentropic modifications 
of temperature by the acoustic waves are less than heating by the chemical reaction 
(Blythe & Crighton 1989). When the pressure dependence of the reaction rate is 
neglected, entropy and species equations (2.3c,d) are no longer coupled to the 
equations of fluid mechanics except through the conditions at the shock, 

4.1. Basic approximation for  guseous detonations 

(7-1) < 1. (4.1 a)  

a c7 Q 
- TS m(.) - T = - w( T, y ) ,  
& at c, 

a a 
-y+yM(7)--y = w(T,y) .  
2r 26 

(4.1 b) 

(4.1 c )  

These equations are easily solved by introducing the time lag A7(6,7) such that 7 - AT 
is the time at which a fluid particle which is located at the current time 7 at position 
6, crossed the shock, 

E = J  m(+) dr‘, (4.1 d )  

(4.1 e)  
a a 

- A T ( [ , ~ ) + P M ( T ) - A T ( ~ , ~ )  = 1. ar gt 
Using the boundary conditions at the shock (6 = 0: T = Tw, y = 0) solutions of 
(4.1 b, c) are written as 

T-ATK, 7) 

The progress variable and the temperature given by (4.1Lg) are more conveniently 
written in terms of the steady state solution as 

Y = +?XTd-A7(63 7)h A7(6,7)), T = %(Tv(.-A7(5, 7)),A7(5,7)) ( 4 . 2 ~ )  

where “?J,( Tv, 6 )  and <( Tv, 5) are stationary solutions 

dG&’d[ = WPX, q), d9Jdt  = w ( q ,  6) Q/C,  (4.2b) 

satisfying the boundary condition 

t=o: q = o ,  %=7;4. (4 .2~)  

Values of y ,  T and M, at the current time 7 and at position 6, are thus expressed by the 
stationary distributions at position A7(5, 7) with a shocked gas temperature T%T at an 
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earlier time 7-A~([ ,7) .  Once the distribution of the sound speed (2.5d) is expressed 
from (4.1f’) and ( 4 . 2 ~ )  in terms of the steady distribution as 

a/aiL’, = 4,(TN(7-A7(5,7)),  AT(<, T) )  where do(Tv, [) G (5JTvJ1’2, (4.2d) 

and when p = y - V p  is introduced in (2.3a, h), equations for p and L; are obtained in 
a closed form. Then, by eliminating ZI, the full problem of the detonation dynamics 
reduces to solve a nonlinear equation for l /p with boundary conditions (2.6) and 
(2.7 a, b). Further simplification is required for deriving an analytical solution. 

4.2. Distinguished limit 
From now on, let us define P N  as the temperature sensitivity of the value of the reaction 
rate immediately downstream of the inert shock, 

(4.3 a) 

Guided by the order of magnitude estimates of $3, h = O( 1) in (3.8g), let us consider 
the following distinguished limits : 

Pn;+cc with PN(y-  1) = 0(1), (y-  1) M i  = O(l), Q/C, TN, = 0(1), (4.3b) 

and focus the attention on small perturbations of the inert shock: 

(4.3 c)  

The condition (y - 1) Ad: = O(1) may be replaced without loss by (y  - 1 )  M :  + 1. 
Then, according to (2.6~-e), one has 

o i k ) ,  = .(&), but % = O(1). (4.3d) 
P N, *NO 

At the leading order of (4.3 6,  c), the approximation m = 1 is valid in (4.1 k-g) yielding 
A T ( ~ , T )  = f and the distributions (4.2~-c) of y ,  T and w at the current time T 

correspond simply to stationary distributions but with a gas temperature at the shock 
at an early time T-< ,  

Y = % ( ~ X T - [ ) , [ ) ,  T-yQ/C,  = Ty(7-t). (4.3 e) 

Let us introduce a reduced fluctuation of the shocked gas temperature, 

0, PN(T;V-TN,)/T’, = (4.3f 1 
and let Qo(@A,,a be the steady distribution of the rate of heat release solution of 
(4.2 b, c). Perturbations (4.3 d )  are large enough to produce strong nonlinear effects in 
the limit (4.3~2, h), SWIM: = 0(1), yielding a leading order of the distribution of the 
unsteady solution written as 

11; = lim Q,(@,(T-~), 5). 
8x.t W 

(4.3 9) 

This limit is discussed in 54.3. 

(y - I) A4: = O( I), yield a very subsonic flow immediately behind the shock, 
According to (2.6c), the first conditions of (4.3b), PLv(y- 1) = 0(1), 

Mk, = O(l/P,V). ( 4 . 4 ~ )  
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Notice that for an Arrhenius law (2.1f), one would have ps = E/RTNU and condition 
(3.6e) is automatically fulfilled by ( 4 . 4 ~ )  when E/RT\, + 1. 

Equations ( 2 . 6 ~ )  and (2.6g) yield 

(4.4b) 

in such a way that the two last conditions of (4.3b), (y -  1)Mi = O(l), 
Q/C,  Tvo = O( I ) ,  correspond to a high degree of overdrive, 

' / ! fG M C J / M Z  = o(1/fi&7), (4 .44  

a condition that still holds for (y-  1)Mi  $ 1 and, thus, for M:,J + 1. In both cases, 
(y - 1) M i  = O( 1) and (y - 1) M :  + 1, low overdrives ( f  approaching 1) correspond 
to Q/C, Tv, = O(p,) in the distinguished limit pn; + mi, px(y- 1) = O(1). Thus, 
according to ( 3 . 6 4  and (4.4a-c), the distinguished limit (4.3b) ensures that a zero- 
Mach-number approximation, M ;  = O(l/p,) is valid within both the induction zone 
and the reaction region (MI  = u / a  is the local Mach number). 

4.3. Nonlinear integral equation for overdriven detonations 
The pressure term of (2.4) being negligible, Sp/p = O(l/p,) across the detonation 
structure, the quasi-isobaric mass conservation (3.7a, b) is valid at the leading order of 
an asymptotic expansion in the limit (4.3 h, c). By using the unsteady distribution of the 
rate of heat release obtained in (4.3g) this yields a nonlinear integral equation for ON(7) 

(4.5a) 

where b is the same coefficient of order unity as in (3.8g) in which p is replaced by PN 
and where O,, is, according to (4.3g), equal to 

Q,K(@L\,,LJ = lim O,(@,,f;) with 0, = O(1). (4.5b) 

With a uniform sensitivity to temperature of an Arrhenius Iaw (2. I f ) ,  the limit (4.3 b) 
used in (4.5b) yields a singular distribution leading to spurious singularities of the 
square-wave model (see 43), 

O,, = [;'(7-05)(5/5t(7-5>- 1) with &(7) = exp(-0,(7)). ( 4 . 5 ~ )  

Such a brute force limit of an Arrhenius law, so useful in flame theory (see Clavin 1994 
for a review), cannot be the right strategy to capture the threshold and the dynamics 
of galloping detonations. As shown by the particular examples studied in $3.4, a non- 
zero thickness of the region of heat release (finite rate of the exothermal reaction) is 
required for describing the dynamics in the high frequency range. When the 
distinguished limit (4.3b) is modified by using (4.1f) with a small heat release 
approximation, 

one gets at the leading order 

Bh, 3 a 

p v q  = O(1) with q = Q/C,TA%70, ( 4 . 5 4  

exp(-E/RT)/exp (-E/RT,B) = exp(PA7 qy)exp (0, ( T - 0 ) .  (4.5e) 

A smooth distribution O,, (5, T )  is obtained from (4. I )  and (4.2) in this limit. The time- 
dependent distribution so obtained is the same as (4.6f) with $01) = (1  -J>)  exp (PAT qy). 
The end result is similar to (4.5 c) but with a smooth function Qo ([/&) replacing the 
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Dirac distribution S([/&- 1). A one-step kinetic model (2.1s) and assumption (4.54 
are not accurate approximations of ordinary detonations. However the end result, as 
given by (4.6.f). is a fair representation of the unsteady structure of real detonations in 
which large variations of a smoothly distributed heat release rate are induced by small 
variations of the shocked gas temperature (see figure 2). This model (4.6f) picks up the 
essential features and will be used for simplicity in the rest of this paper. Fur large heat 
release it may be justified as follows. Contrary to flames, the chemical processes 
involved in the induction period are essential in the structure and dynamics of 
detonations and must be considered separately from the heat release rate. In the 
complex chemical networks of combustion, the elementary reactions involved in the 
induction period are different from those governing the heat release. They are athermal 
and extremely sensi tive to temperature. The activation energies of the exothermic 
reactions are smaller. Within the framework of a crude modelling of the combustion 
rate by a one step overall reaction, one is led to consider t ~ 7 0  activation energies: BN 
defined by (4.3a) and governing the temperature sensitivity of the athermal induction 
period and PT governing the temperature sensitivity of the rate of heat release with 
PT << BN, A general model of reaction rate yielding a smooth distribution in the limit 
(4.3b, c) is 

W(y, T )  K t;il h(T+-)g(T)(l -y)" with by definition g(7'') = 1 (4 .6~)  

and where Ti\ has to be taken at retarded time ~ - g ,  T,, (T--[), with 

(4.6b) 
so that 

& +  rn with (4.3tic) and pTr = O(1). (4.6 c) 

BY UsiW the Same reference time as in (2.2b) and following (4. I), one gets from (4.6b, c), 

E k1T,.dh/dT\7 %- PT E g-'Tdg/dT, 

with 1 (4.6d) 

$(.I)) (1 -Y)ng(Tvo+YQICp)r Q(Y = 0) = 1, J 
where the reduced induction length &(7) = h(Thi0)/h(TJ7)) is a function of the gas 
temperature immediately downstream of the shock. From now on let us assume that 
h(T,-) is an Arrhenius law, 

h(7;,) ~exp(-E,/Ri",~)=P, = E/RTvo, &(7) = exp(-ON(7)). (4.6e) 

According to (4.6d-e), the time dependent distribution of the rate of heat release in 
(4 .5~ )  is 

where w = Q&) is the reduced distribution of the steady state, 

0 =o " with lo& = - 6 
d t  a' 

and where the choice of c1 determines the unity length. The most popular scaling is such 
that y = +, for 5 = 1 : 

(4.6 h )  



FIGURE 2. Distributions of heat release rate computed with a complex chemical network for plane 
detonations propagating at constant speed in hydrogen-oxygen mixtures at a stoichiometric 
composition and ordinary conditions, T, = 298 K,  p ,  = 1 atm, for three different detonation speeds. 
(a)  Reduced heat release rates Q,(x) as a function of the distance from the shock and arbitrarily 
normalized by the maximum value of the case corresponding to D = 3100 m s-l. (h) The same results 
plotted in the form l; lQ0(x/l ,) ,  where length li is defined here as the position of the maximum value 
in (a). The assumption of a self-similar deformation law (4.6f') is found to be verified in this real 
mixture with a uniform accuracy better than 30 %' for $DID x 10 %. 

A numerical computation of the detonation structure with a detailed chemical kinetics 
scheme for a H,-0, mixture shows that (4.6f) is a fair approximation (see figure 2). 
Then, according to (4.5a) and (4.6), the evolution equation describing the nonlinear 
dynamics of gaseous overdriven detonations is 

exp (OAT(~- 0) Q,(texp (O,(T - a)) d t  

with 

bpl G Plhr(r- 1)- = O(1) 
c, T N ,  

yielding, in the linear approximation, the same equation as (3.10) with 

( 4 . 7 ~ )  

G ( 9  = Q,L9 + 6 dQ0(0/d6 = d(6Qo)/dt. (4.7 b) 

Equations (4.7a,b) exhibit the influences of both the distribution of heat release 
Q&) and the sensitivity of the induction kinetics to temperature /3,,, through the 
coefficient b. 

4.4. Generalized Arrhenius model 

Most of the existing numerical results have been obtained with an Arrhenius law 
(2.1f). For the sake of comparison with the existing results, it is convenient to carry 
out a parametric investigation of solutions of ( 4 . 7 ~ )  with a kinetic law satisfying 
assumptions (4.6a, b) and yielding for PN = PT the same steady distribution Qo(Q as 
that obtained by an Arrhenius law. Consider the kinetic model given by 

(4.8 a)  

where PT is a parameter different from Px. This law satisfies (4.6) and reduces to ( 2 . l f )  
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when PI, = PN = Eh,/RTv. Following the analysis of the preceding section with 
TN (7-[) introduced in (4.8a), one gets an evolution equation ( 4 . 7 ~ )  in which the 
steady distribution Q0(Q is obtained from (4.6g) with 

(4.8 b) 

The parameter of order unity q characterizes the temperature increase due to the heat 
release. This parameter appears both in Qo(Q through $ ( y )  and in the dimensionless 
parameter b-' = PN(y - 1) q of (4.7a). The larger is the quantity PT q = O( I), the stiffer 
is the reduced distribution of the rate of heat release Q,(Q. To summarize, two essential 
parameters control the final results of (4.7 a) and (4.8 a), b-' = P,,,(y- 1) q and Py, 4 ;  the 
parameter q left in (4.8b) has a minor influence. Three points have to be kept in mind: 

(i) The same steady distribution Qo(a as that given by an Arrhenius law is 
obtained when PT = PiL' = EN/RTVo;  

(ii) the exponential model of 53.4 corresponds to PT = 0, 
(iii) the limit PT+ 00 yields the square-wave model. 

5. Discussion of the results 
5.1. Linear spectrum 

The spectrum of the linearized equation ( 4 . 7 ~ ~ )  corresponds to the roots of (3.10b) 
with (4.6g), (4.7b) and (4.8b). Typical unstable spectra are plotted in figure 3 for 
different sets of parameters (b-', PT, 4). These unstable spectra are qualitatively similar 
to those obtained numerically by a shooting method as in Lee & Stewart (1 990) from 
equations (2.3) with an Arrhenius law (2.lg). For the sake of comparison, such spectra 
are also plotted in figure 3 for conditions corresponding to the same sets of parameters 

P, q)  but with more realistic values of the overdrive factor than those satisfying the 
conditions of validity of the quasi-isobaric approximation. These spectra exhibit a 
finite number of unstable modes and the high-frequency modes are stable. Both the 
growth rate and the frequency of the most unstable mode increase with PT and the 
unbounded spectrum of the square-wave model is recovered in the limiting case 
PT, + 00. Quantitative differences in growth rates and frequencies of order 
M., z (7- l)liZ are observed between (4.7a, b) and numerical analysis of linearized 
equations (2.3). These differences result from the effects of acoustic waves which have 
been neglected here; we postpone this discussion to the last section. 

The stability limits are plotted in figure 4 in a (b-', PT) plane. The results obtained 
from (4.7a,b) with (4.&a,b) for q = 1.2 are compared with those obtained from the 
numerical study of the spectrum of the linearized equations (2.3) with ( 5 . 1 ~ )  for 
y = 1.2 and q = 1.2. Both stability limits correspond to a super critical Hopf 
bifurcation. The two marginal stability curves are close and correspond roughly to a 
straight line crossing the points (b-l = 2, PT = 0) and (b-l = 0, /IT = 12). Increasing 
one of the parameters h-l or PT has a tendency to destabilize the detonation. Here also 
a discrepancy of the same order of magnitude as MAvo = (y-  1)''' is observed in the 
frequency of the marginal mode. 

Let us now investigate the phase space by increasing b-l for different fixed values 

(i) Consider first the domain PT < 6. Here the first bifurcation concerns the lowest 
frequency mode of the spectrum and occurs at a critical value of b-l ranging from 1 
to 2 when PT decreases from 6 to 0. In the unstable domain, the growth rate of this 

of pT: 
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FIGURE 3. Growth rate us. frequency for eigenvalues of typical unstable spectra of detonations 
corresponding to model (4 .7~)  with (4.8a, b) and full equations (2.3) with (2.1f), respectively. The 
timescale is here the half reaction time i,,*. 
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FIGURE 4. Stability limits in a plane (b-l, /I,). The detonation is stable in region I, unstable in region 
I1 and a dynamical quenching is predicted in region 111. a, stability limits obtained by solving 
(4.7~1, b) with a reaction model (4.8~1, b); 0, stability limits obtained by solving the exact linear problem 
with the same reaction model; 0, stability limits obtained by solving the exact linear instability 
problem with an Arrhenius law and different values of the degree of overdrive, the same limits are 
obtained by DNS; 0, limits at which the frequency of the first mode (fundamental) becomes zero. 

linear mode increases with b-l while its frequency decreases toward zero, see figure 5. 
This frequency reaches zero at another critical value of b-l which varies from 2.8 to 4 
when PT decreases from 6 to 0 (see figure 4). This second critical limit is also plotted 
in figure 4. In the particular case PT = 0 there is, according to (3.8h),  only one 
oscillatory mode in the unstable spectrum for 2 < b-l < 4; the Hopf bifurcation occurs 
at b-l = 2, and the frequency of the unstable mode reaches zero in the unstable domain 
at b-l = 4. A similar scenario occurs in all the domain 0 < PT < 6; no other linear 
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FIGURE 6. Evolution of @,(t) obtained from ( 4 . 7 ~ )  and ( 4 . 8 ~ )  for ,8, = 7 and two values of b-' = 0.87 
and 1. The timescale is the half reaction time t,,,. For these parameters, the linear stability equation 
(4.7b) yields two unstable modes: g+io = 0.035+i 1.41 and 0.142+i 6.85 for b-l = 0.87, 
r + i w  = 0.12+i 1.32and0.25+i6.86forb-l = 1. Noticethatthemostunstablelinearmodedevelops 
first but the final periodic oscillation has a period equal to that of the fundamental mode. 

mode becomes unstable in the unstable domain of the phase space between the two 
above mentioned critical values of b-I. 

(ii) For ,!IT, > 6, the first bifurcation which appears by increasing b-l concerns a 
higher frequency mode; the linear mode with the lowest frequency bifurcates at a 
higher value of b-l. Thus, as shown in figure 3, the spectrum presents several unstable 
modes. The frequency of the fundamental mode (lowest frequency) still decreases when 
increasing further h-l and reaches zero on a critical line plotted in figure 4; for example 
this second critical value of h-l is about 2.7 for /IT = 10. 

5.2. Nonlinear dynamics 

Numerical solutions of ( 4 . 7 ~ )  may be obtained as the response to external perturbations 
by using a direct extension of ( 4 . 7 ~ )  to the case where perturbations are present in the 
fresh mixture in which the detonation propagates, 

where OA,,(7) are the induced fluctuations of the shocked gas temperature immediately 
downstream of the inert shock propagating with a velocity Do across the external 
perturbations, as given by Rankine-Hugoniot conditions (2.6). The calculation is 
initialized at 7 = 0 by using the unperturbed steady state solution for 7 < 0, 
ON(7) = OAT0(~)  = 0, and a prescribed perturbation ON,(7) =k 0 for 0 < r < A. For 
sufficiently small perturbations the asymptotic time behaviour of the solution of (5.1) 
does not depend on ON0(7)  (at least in a statistical sense when the solution is chaotic); 
the so-obtained function ON(7) may be considered as an intrinsic solution of (4.7~1). In 
the unstable region of the phase space, between the two critical values of b-' mentioned 
above, oscillatory solutions are observed. The period of these two critical values of b-l 
is either that of the unstable mode with the lowest frequency or of its subharmonics (see 
figures 6 and 7). When b-l is increasing into the unstable domain from the marginal 
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FIGURE 7. Evolution of 0,Jt) obtained from ( 4 . 7 ~ )  and (4.80) for p, = 5 and four values of 

h-' = 1.07, 1.77, 2.83 and 4.96. The timescale is the half reaction time ll,2. 

stability limit, the amplitude of the oscillatory solutions of (4.7~1) increases. The 
solution experiences period doubling and a transition to chaos appears in the 
neighbourhood of the second critical value of b-l at which the frequency of the 
fundamental mode reaches zero (see figures 6 and 7). This chaotic behaviour is 
intermittent presenting bursts of high-frequency oscillations with large fluctuations of 
fast velocities (0, > 0) separated by wide periods of time in which the detonation 
propagates at slow motion with a quasi-constant speed much below the steady state 
one (0, < 0). The life-time of such a slow propagation regime increases very quickly 
with b-l while the quasi-constant propagation speed and the gas temperature 0, 
decrease (see figure 7). Such a scenario is similar for every value of PT at least in the 
domain which has been investigated, 0 < PT < 12. The presence of additional unstable 
modes at higher frequencies (when PT > 6) influences neither the frcquency of the 
nonlinear oscillations which is systematically governed by the fundamental mode, nor 
the scenario of transition to chaos. In particular the transition to chaos Occurs as a 

fundamental mode reaches zero. 

in the neighbourhood of the points Of the phase space at which the frequency Of the 
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FIGURE 8. Evolution of the pressure at the Neumann spike (normalized by the initial pressure p , )  
obtained by direct numerical simulations for piston-supported detonations with different values of 
the degree of overdrive and a fixed value of the activation energy in the Arrhenius law. The timescale 
is the half reaction time &,. 

Comparisons with direct numerical simulations (DNS) of planar detonations 
sustained by an Arrhenius law have also been carried out by using the same numerical 
method as in He & Clavin (1994). Good agreements are obtained at high overdrives 
and for a ratio of specific heats close to unity. The similarity of the nonlinear scenarios 
experienced by the solutions of (4.7a) and of direct numerical simulations (DNS) is 
striking even at low overdrives (see figure S), but the amplitudes of highly nonlinear 
regimes in DNS (and more particularly of pressure fluctuations) at low overdrives are 
much larger than the ones considered by the limit (4.3b-d). For the sake of 
comparison, the transitions between the different regimes shown by DNS may be 
plotted in a (b-', /?,)-plane with PT = P N .  In the case of a piston-driven detonation 
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with a prescribed Arrhenius law, a decrease of the degree of overdrive corresponds to 
an increase of parameter b-l,,f-l w 2(y- 1) q and h-l = pfi(y- 1) q. The stability limits 
are shown in figure 4. The agreement with the results obtained from (4.7a) is 
satisfactory, however quantitative discrepancies appear at low overdrives. 

Long periods of slow propagation are observed in figure 8 as they were in figure 7. 
They have been interpreted by He & Lee (1995) as responsible of dynamical quenching. 
The explanation is as follows : the complex chemical networks governing the 
combustion kinetics present cross-over temperatures defining the flammability limit as 
in H,-0, mixtures (see for example He & Clavin 1993); if, during a period of 
deceleration, the shocked gas temperature immediately downstream of the inert shock 
drops below this cross-over temperature the induction time increases so much that the 
least external perturbation will quench the detonation. The critical conditions for such 
a dynamical quenching correspond roughly to the line of zero frcquency of the 
fundamental mode in figure 4. 

6. Conclusions and perspectives 
We have derived a nonlinear integral equation for the dynamics of overdriven 

detonations as an asymptotic solution of the reactive Euler equations in the 
distinguished limit (4.3 b, c) with a kinetic model yielding (4.6h g). Two approximations 
in (4.3 b, c) are accurate for ordinary gaseous mixtures: a high-temperature sensitivity 
of the induction period, PN & 1, and a ratio of specific heats close to unity, (y  - 1) 4 1. 
Consequently the reversible pressure fluctuations have negligible effects on the entropy 
waves (2.3 c). Thus, the main restriction of the results obtained is the last condition of 
(4.3 b, c) limiting the analysis to piston-driven gaseous detonations at high overdrives. 
Such a limit yields a quasi-isobaric approximation which is useful to shed light on the 
basic mechanisms of galloping detonations even outside the domain of validity of the 
analysis. The approximation of a small local Mach number is generally accurate 
immediately downstream of the shock, typical values are MLvo w 0.2-0.3 for CJ waves. 
However, the local Mach number increases with the heat release to reach unity in the 
burned gases of the marginal CJ detonations ( f =  1). Pressure effects can no longer be 
neglected in the detonation dynamics at low overdrives. They introduce quantitative 
but no qualitative differences in a wide range of ordinary regimes of propagation. An 
analysis of these effects are presented elsewhere (Clavin & He 1995; He 1995). The 
main features are as follows: fluctuations of the heat release being governed by the 
shocked gas temperature with a delay introduced by the propagation of the entropy 
waves, the characteristic time of evolution is longer than the transit time of the acoustic 
wave propagating downstream by a factor Mi!.',. Owing to the small value of MA, , a 
strong amplification of acoustic waves by a coherent mechanism as in thermo-acouhc 
instabilities cannot occur. The role of the acoustic wave propagating upstream across 
the detonation structure is limited to bring the information back to the shock. This 
increases the delay in ( 4 . 7 ~ )  yielding a correction of the same order of magnitude as 
M N ,  without modifying the form of the equation. The marginal CJ case remains an 
open problem. 
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Appendix 
The reduced induction length ti(.) corresponds to (2.2) with x = x,(t), 

By choosing the reference time equal to the unperturbed induction time, tref = tie, the 
exothermic sheet of the unperturbed state is located at 5 = 1, 

(A 2) 

According to (2.5a-d) and (2 .3c) ,  the acoustic waves and the entropy waves 
propagating across the uniform induction zone (0 < 6 < ti: w = 0) yield 

with M N ,  < 1. The linearized Rankine-Hugoniot conditions (2.6) at 6 = 0, imply that 
all the three functions Sf+(.), Sf-(7), Sh(7),  are proportional to the perturbation of the 
reduced mass flux across the shock Sm(7), (m = 1 +Sm(r)). Then, the perturbations 
&I,(.), 8vr(7), 6p,(7) at the entrance of the reaction sheet and at the current time 7 are 
obtained from (A 3 )  at 6 = cfo = 1, as a linear combination of the three quantities of 
(3.1). By definition and by analogy with ( 2 . 3 f )  the reduced mass flux crossing the 
quasi-steady reaction sheet appearing in (3.3) is 

where D,(t) = -dx,/dt is the velocity of the reacting layer (see figure I), D,(t) = 

Do + SD,(t), m,(T) = 1 +am,(.>. Kinematic considerations and definitions (A 1) (A 4) 
and (2.3f) yield 

dli/dt = SD(t) - SD,(t), d&/d7 = Sm(7) - SVZ,(T). (A 5 )  

On the other hand, owing to kinetic laws (2 .  If), dli/dt is governed by the fluctuations 
of the thermodynamic variables inside the induction zone. Solution of this problem 
from the basic equations is not an easy task in general, it would require at least the 
solution of the nonlinear Clarke equation (see $9.5 in Clarke 1985). An asymptotic 
solution may be found in the limiting case (7- 1) -g 1 for which equations (2.3 c, d )  
reduce to (4.1 b, c). Thc square-wave model is obtained from an Arrhenius law 
(2.lf) in the limit /l E E/RTNo+ co and the induction length is determined by the 
runaway of the first term of the asymptotic expansion of the temperature, 

solution of the following equation : 

- -@+m(7)-@ a d = trefP----- ' Bexp(-E/R7;,(7)}exp@. 
87 a g  TN, 
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Let us choose for convenience the reference time as the induction time of the 
unperturbed solution : 

Then, according to (4.1 d)  and (4.1g), the inductjon length, &(7), and the time delay, 
A7(&, 7), are solutions of the two coupled equations: 

yielding for the unperturbed solution characterized by m, = 1 and TN(7) = Tvo : A7, = 
t,, = 1. In the linear approximation, the time derivative of (A 9) yields 

(A 11)  
d d 
d7 d7 
- &(7) = S ~ ( T )  - Sm(7 - 1) + -  AT(&(^), 7) 

where dA~/d7  is obtained from the time derivative of (A 10); 

1 dTN(7-1) d 
+ - A T ( & ( T ) , ~ )  = 0. 

d7 B- dr  

Equations (A 11) and (A 12) lead to 

to give in dimensional form 

8D(t)-8D(t-tto) 1 d 
- p - - T N ( t - t i )  with /3B 1. (A 14) 

I d  
--Z,(t) = 
lt, dt 4, TN, dt 

Equation (3.4) is obtained from (A 5) and (A 13). When Sm is neglected in (A 13), one 
gets (4 .5~) .  
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